• Dynamics Processors : Compressors / limiters

    4. Setting and connecting a compressor depending on the application

    First of all, we need to decide whether we need compressing at all in the first place. Commercially available recordings are already compressed, so that it is seldom necessary to add further compression. In sound reinforcement applications, it is not common to use compression in a creative way to achieve specific effects, since it is the musicians that are responsible for their own sound character through effects units or amplifier combos. One must also bear in mind that compressing allows for increased average energy to reach amplifiers and loudspeakers, which could also increase the possibility of acoustic feedback, since a kind of sustain effect is generated.

    Before using a compressor, we need to connect it in the right place. If we use it in combination with a mixer, we will connect it to an insert point. The insert outputs are always pre-fader, which means we do not have to change the compressor's threshold every time the fader position is changed. Since attenuation of the higher volume signals produces a kind of sustain effect, compression may worsen some situations where feedback is a problem. On the other hand, if we apply compression to reduce the dynamic range and then add an amount of gain such that peak levels of compressed and uncompressed signals are the same, we are raising the average energy of the signal that gets to the amplifiers and speakers, which may be useful if we are short of equipment for the application, though it can potentially create thermal failure on the speakers (i.e., we may burn a voice coil) or trigger the thermal protection of the amplifiers (particularly if we are driving low impedance loads), which will mute to protect the amplifier. If we have an oversized system for the application, it's not a bad a idea to keep compression on the instruments to a minimum and thus preserve their natural dynamics.

    Another side effect of compression is dulling of the sound, which is perceived as having less high frequency content. The reason for this is as follows. The frequency content of music has a lot more energy on the low frequencies than on the high frequencies. Which is why VUmeters move following bass drum and bass guitar. When a bass drum is compressed in the context of a full mix, we are also compressing the cymbal hits that may happen at the same time and which are a lot lower in level. The result of that is the aforementioned dulling of the sound. This effect can be minimized with slower attack times that let the percussive transients through. Some degree of high frequency boost is also often applied to counteract the dulling effect.

    If we are looking to limit the output signal to a set level to protect a piece of equipment or avoid distortion, we will use a compressor (acting as a limiter in this case) just before the device (such as an amplifier or recorder). For instance, between the master mixer output and the amplifier. If the amplifier (or powered speaker) already features a built-in limiter that works as a function of the amplifier clip, it's probably best not to use a compressor and let the amplifier do it. If the speaker system is active and there is an active crossover with independent limiters per band, it would be advised to use these, as their attack and release times would normally be adequate for the frequency band being reproduced (quicker for high frequencies, slower for bass). Personally, I like clean sound systems with some headroom to spare, so I would set it to only occasionally trigger the limiter as a form of protection.

    In general, the criteria in this article are given as overall guidelines and starting points, but they will depend on the specific compressor model and they may have to be fiddled with by ear.

    For the compressor to work as a limiter, we will adjust the compression ratio to 20:1. Unlike compression, limiting is utilized as a brick wall that avoids signal peaks causing damage to speakers or overloading amplifiers (or recording devices), so limiters should only activate occasionally. Otherwise the effect will be very audible and sound quality will suffer. Attack times need to be fast to ovoid overload or over-excursion (on the speaker). Since there is always some degree of limiter overshoot (the limiter takes a finite time to provide full limiting, so some transient peaks may escape the limiting action), the threshold level may have to be set 2 or 3 dB lower than the level we do not want to exceed, so as to allow for some time for the limiter to be able to clamp the signal down.

    Depending on the speed of a limiter's attack time, some limiters may distort the signal, working as abrupt wave form clippers. As mentioned earlier, some compressors are equipped with dedicated peak limiters. If so, we will make use of then as they are specifically designed for the job.

    A dedicated type of limiter may be integrated into a power amplifier's channel to prevent continuous clip. If they are correctly designed, the compression (limiting) threshold is not fixed, and compression is only activated when the amplifier channel is actually clipping. The output voltage at which the amplifier clips may vary as a function of the type of signal and the mains power supply voltage, so the limiter would use a "floating" threshold to get the limiter to track the amplifier clip, avoiding unnecessary limiting when the amplifier is not clipping, or avoid the amplifier clipping when the mains voltage is lower than nominal AC power levels. In the case of the limiters in a crossover or controller, ideally they receive a "sense" signal from the amplifier to determine whether the amplifier for a given band is clipping or not, though the additional cabling makes it somewhat cumbersome for live sound applications (unless the sense capability is used in a powered-speaker). If it is the crossover unit that is taking care of the limiting, in practice we have a multiband compressor and, if compression attack and release times are user selectable, we will need to chose faster timer for the high frequencies and slower ones for the low frequencies, thus optimizing the compromise between protection and audibility.

    Ducking refers to reducing (like a duck lowers its head) the level of a signal when another signal is being played. The standard example would be that of music being lowered when a DJ or presenter starts to talk. To achieve it we would use a copy of the presenter's voice fed into the detector circuit via the side chain (key) input.

    Ringing out a system
    A compressor can be used to aid setting up a system when it is being ringed out, i.e. its main feedback frequencies are being removed with an equalizer or a feedback elimination type unit. The compressor will have a low threshold level and infinity-to-1 ratio with hard knee characteristics. With no signal present, we will gradually increase the volume until the first feedback frequency rings. The compressor will catch it and keep it at a constant safe level, making adjusting the equalization an easier task. The process will typically be repeated until the third or fourth feedback frequency has been ringed out.

    De-essing (compressing sibilance)
    Certain singers exhibit excessive 'essing', which causes obvious sibilance. The side chain can be used to feed the detector with a signal that has the sibilance frequencies boosted such that the compressor is most sensitive to them. An equalizer is inserted in the side chain that would apply about 10 dBs to the 3.5-8 kHz region. That way, compression will take place 10 dBs before on sibilant parts of singing or speech. The "s" sounds should trigger about 5 dB of compression, which will be set to be relatively fast. Normally the manufacturer provides a side chain output, which is just a copy of the input signal, but makes it easier to carry it to the equalizer or other gear. Sometimes the output and input for the side chain are in the same 1/4" stereo connector, like on a mixer insert. The illustration shows the configuration for de-essing.

    For live sound this is quite a cumbersome configuration, so it would probably only be worth doing it if de-essing was built into the compressor.

    "Pop" compression
    Basically the same thing as de-essing, but the "popping" frequencies (around 50 Hz) would be boosted on the equalizer to compress microphone handling pop sounds.

    In live sound applications, the singers often place the microphone very close to their mouths. This generates very large volume changes from small changes in distance to the microphone. Sometimes, the singer may have a tendency to shout. For those reasons, some compression will help us to achieve more uniform levels. On the other hand, human hearing is very sensitive to manipulations on the voice, so compression should be as transparent as possible. Compression for the voice would normally use a soft knee setting and a compression ratio between 3:1 and 6:1, depending on the application. Attack time should be fast, and release time around 0.4 seconds. Level reduction should be about 5 to 7 dB on the loudest passages. For more rock type voices, we can use heavier compression with up to 10:1 ratio, a hard knee setting and attenuation levels up to 15 dB.
    A benefit of compressing is a certain feeling of warmth as the artist's whispers can be heard. However, other low level vocal noises such as breathing and lip smack are also emphasized, so a noise gate (if the compressor has a built-in gate, this can be used) is sometimes needed to eliminate or attenuate them.

    Acoustic guitar
    (These settings are also valid for acoustic sounding electric guitars). Attack times should be in the 5-40 ms range, with around 0.5 s release. Slower times allow the percussive attack of the string to pass through. Ratios should be between 5:1 and 10:1, with around 5-10 dB level reduction.

    Electric guitar
    In general, the sound of the electric guitar does not need compression in sound reinforcement applications, since the much needed sustain is provided by the guitar amplifier and/or a compression pedal. If necessary, though, attack time should be in the 2-5 ms range (slower if some emphasis is to be preserved), and some 0.5 s release. Ratios should be around 6-10:1, with 8-15 dB compression and a hard knee setting.

    For funk type sounds, compression should be higher, using a low thresholds and ratios around 6:1 with a soft knee setting.

    Bass drum and snare
    By and large, quite substantial compression is applied to the drums, particularly if the drummer's technique is not very consistent. Ratios should be around 4:1, with an attack time somewhere between 1 and 10 ms, closer to the latter if we want to emphasize the attack, which is particularly useful for adding presence and depth to the bass drum. Release times should be between 20 and 200ms; and in any case shorter than the time between drum hits. The threshold should be set such that the compression meter shows just a little compression in the softest parts and up to 15 dB on the loudest beats. Hard knee.

    Pre-recorded drum sounds from a drum machine or samples from a drum module triggered by an acoustical or electronic drum set will require less compression that a real drum set picked up with microphones.

    Like electric guitarists, (electric) bass players will normally provide an already compressed signal to the sound guy, given that compression is an integral part of their sound. In any case, bass is the foundation of rock and pop music, so it is important that its level does not vary too much. Try attack times between 2 and 10 ms (slower times will emphasize the slap), with 0.5 s release. From 4 to 10:1 hard knee compression, meter showing 5-15 dB attenuation.

    1 to 5 ms attack and around 250 ms release. Hard knee compression with 6 to 15:1 ratio and 7-15 dB level reduction.

    In general, these sounds do not have a large dynamic range, so they do not need much compression. For live sound, we can skip the compressor, though sometimes different sounds can have widely different signal levels. A 4:1 ratio may be enough to provide compression on the loudest sounds.

    Instruments in general
    We will use automatic times, or, if not available, fast attack times and around 0.5 s release. Around 5:1 ratio (soft knee) and about 10 dB compression.

    Complete mixes
    There are opposite lines of thought with respect to whether compression should me used on the main signals or not. Some compression could be used to generate a slight "pumping" effect and increase perceived signal levels, making it more exciting. Ideally one would use a multi-band compressor for this. If not available, we can use a fast attack time (around 5 ms) and the fastest release that does not create excessive "pumping".