• Ad

  • News

    ClearOne BMA 360 beamforming microphone array ceiling tile

    ClearOne (NASDAQ:CLRO), provider of audio and visual communication solutions, has announced its new BMA 360, reportedly the world’s most technologically advanced Beamforming Microphone Array Ceiling Tile.

    The ClearOne BMA 360 is the world’s first truly wideband,... Read more

    JBL IRX115S 15-Inch Powered Subwoofer

    JBL has introduced the JBL IRX115S powered subwoofer weighing 65.3 pounds.

    With our IRX Series, we’ve drawn from 70 years of JBL innovation to design a portable P.A. that’s lightweight, powerful and doesn’t... Read more

    QSC Adds Q-SYS Processing Capabilities to the NV-32-H Network Video Endpoint

    QSC announces the release of the multipurpose NV-32-H (Core Capable) native network video endpoint for the Q-SYS Ecosystem, which now allows you to toggle between ‘Core Mode,’ which transforms... Read more

    Shure introduces DuraPlex subminiature microphone

    Shure yesterday unveiled DuraPlex, the company’s new subminiature (5 mm) omnidirectional lavalier and headset microphone boasting Shure’s first IP57 certification rating, keeping dirt, dust, water, and perspiration... Read more
  • Recent articles

    Power amplifier modes : stereo, parallel and bridge mono

    In general, two-channel power amplifiers for professional use default to stereo mode. That is, each amplifier channel receives a signal from its input connector and its volume is controlled by... Read more

    Basic electricity formulas

    Although it not specific to sound, we include this document with some basic electricity formulas. They can be found in any electricity textbook, but we have added them to the DoPA Library for reference.

    Ohm's law

    The most basic formulas derive from Ohm's law, which specifies that the electric current between two points is proportional to the potential difference (voltage) between them and inversely proportional to the resistance between them. The formula is:
    V
    I = ———
    Z


    where I is the current (intensity) in amps and V is the voltage in volts. Since we use alternating current in audio, we have replaced resistance with impedance (Z, and this could also be resistance R), measured in ohms. Clearing Z and V we have these other two formulas:

    V
    Z = ———
    ... Read more

    Y-cables, looping audio signals through

    This article will explain loop-though connections and "y-cables" for analog audio signals.

    To obtain one or more copies of a signal (for example, to distribute the signal from a mixer to various self-powered speakers or power amplifiers) we use parallel connections. To do this we simply connect each terminal (pin) of the connectors in parallel. That is, 1 to 1, 2 to 2 and 3 to 3 (or tip to tip, ring to ring and sleeve to sleeve in a TRS connector). When we split a signal in two in this way, we refer to a "Y-cable" or "Y" connection, since the division of a signal in two looks like letter "y". Contrary to what it may seem, a y-cable is not a technically incorrect solution, but a correct way of splitting the audio signal. In fact, when a self-powered loudspeaker system or one channel of... Read more
  • PAcalculate app