• Frequency weightings: A, B, C and Z

    In the loudness contours reference, we learned that the frequency response of the human ear is not flat and it also varies considerably with listening level. To try and approximate acoustical analyzers to the response of the ear, frequency weighting curves were created. These are simplified versions of the ears' frequency response at different levels. Thus, for low sound pressure levels, the A weighting is used, which provides substantial low frequency attenuation (-50 dB at 20 Hz and almost -20 dB at 100 Hz) and some high frequency attenuation (about -10 dB at 20 kHz). The A weighting is adequate for the measurement of background noise, which is low level by nature.

    The B weighting is used for intermediate levels and is similar to A, except for the fact that low frequency attenuation is a lot less extreme, though still significant (-10 dB a 60 Hz). Recent studies show this is the best weighting to use for musical listening purposes.

    The C weighting is similar to B and A as far as the high frequencies are concerned. In the low frequency range it hardly provides attenuation. This weighting is used for high level noise. The different weightings can be graphically compared on the graph above.
    These weightings are not very accurate for two reasons. Firstly, they are based on the inverse of the Fletcher & Munson contours, which are old and provide substantial error, since they were measured with the limited instrumentation of the time. Secondly, the curves are simple and do not include significant inflexions happening in the mid-range (around 3500 Hz) as well as the high frequencies. This last reason is due to the fact that the weightings were designed around practical -and hence very simple- electrical circuits for the time. For those reasons the weightings are not all that accurate as they do not reflect the exact behaviour of the ear, although they do provide basic attenuation in the low and high frequencies that approximately simulates the varying responses of the ear at different levels. Nowadays it would be possible to define new weightings based on more exact loudness contours, and they could take more complex shapes that reflected ear responses more accurately and be easily realizable with current electronics. However, decades of use of the classic standard weightings seem to be an obstacle when it comes to standardizing a new set of more exact weighting curve.

    Measurements taken using the aforementioned weightings are denoted by writing the weighting letter in parenthesis after "dB". Thus we speak of dB (A), dB (B) or dB (C). There exist other weightings for special applications such as D, for very high pressure aeronautical noise.

    On a sound level meter (SLM) we should select weighting B for measuring loudspeaker enclosures in the listening area. If B is not available and we are forced to choose between A and C, we should pick C. If only A is available, we should use not weighting. If, for environmental reasons, we are after the lowest possible sound pressure reading, we should choose A, since it is the weighting that provides the most attenuation.


    In recent years the B-weighting has been phased out from sound pressure meters (and from the 2003 edition of IEC 61672) and the 'linear' ('unweighted') position has been replaced by the Z-weighting, which is the same except that the minimum frequency band in which the response must be flat (10Hz to 20kHz, ±1.5 dB) is specified.

    In telecommunication, the term 'psophometric weighting' is used, and the CCITT and 'C-Message' curves, which are more extreme in terms of attenuation of highs and lows than the C-weighting, are utilized.



  • Ad

  • News

    DLIVE goes deeper with firmware V1.9

    Allen & Heath has announced dLive V1.9, reportedly the largest firmware release in the history of their flagship dLive mixing system.

    “With over 45 user-requested features and numerous improvements,... Read more

    Danley and Dynacord announce strategic alignment



    Professional audio brands Danley and Dynacord are teaming up to bring complementary product combinations to the global marketplace.

    In what has been termed... Read more

    Lynx Pro Audio launches XT Series power amplifiers

    XT series is a new generation of amplifiers from Lynx Pro Audio for both touring and install applications that offers a high voltage output combined with a 96 KHz and double-precision... Read more

    RCF announces a new system for the TT+ Series

    Italian audio company RCF introduces the T 515-A speaker and TT 808-AS subwoofer, two powered portable speakers for high-powered portable and installed professional applications. This approach combines the advantages of RCF TT+... Read more
    Etiquetas: rcf 
  • Recent articles

    Intelligibility and its measurement

    1. What is intelligibility?

    The state or quality of being understood. It can apply to an idea or a writing, but in our context it relates to the spoken word and, less commonly, to music.... Read more

    Choosing loudspeaker cable

    The importance of cables for the connection between the amplifier and the speaker is often controversial. Hi-fi aficionados spend fortunes on cables that promise spectacular results, and our short auditory memory and subjectivity lead many to confirm these improvements in their systems.... Read more

    Constant voltage systems (70V, 100V lines)

    Constant voltage, high impedance or line transformer systems are often a somewhat confusing concept for professionals used to rock and roll. They are actually very simple to design, among other things because they are intended to be installed by electricians and the like, with little experience in sound systems. In this article we will try to clarify the simple concepts needed to understand this type of system.... Read more
  • PAcalculate app